

Gestión: 2024

Carrera o programa: LICENCIATURA EN QUÍMICA

Programa Analítico QUIMICA ORGANICA

1. Datos generales

Unidad de formación:	QUIMICA ORGANICA Código SISS: 2004053		
Carácter: Obligatoria/Electiva	Obligatoria		
Nivel (Semestre/año):	Cuarto Semestre		
Dependencia: Carrera/Programa/Departamento	Departamento de Química		
Carga horaria total semestre/año	120 horas/semestre	Créditos acadé	micos: 6
Pre-requisitos:	EQUILIBRIOS EN DISOLUCIÓN (2004050)		

2. Contenidos mínimos

Unidad Didáctica 1: INTRODUCCION	 1.1 Orbitales atómicos 1.2 Mecánica Cuántica 1.3 Número cuántico principal 1.4 Número cuántico Secundario o acimutal 1.5 Número Cuántico Magnético 1.6 Número Cuántico del Espín 1.7 Relación entre los números cuánticos "l" y "m" 1.8 Relación entre los números cuánticos "n" y "l" 1.9 Configuración electrónica de los átomos.
Unidad Didáctica 2: ENLACE QUIMICO	2.1 Introducción 2.2 Formación de enlaces electrovalentes 2.3 Formación de enlaces covalentes 2.4 Enlace covalente coordinado 2.5 Enlace metálico 2.6 Enlace de Hidrógeno 2.7 Electronegatividad 2.8 Carga formal de un átomo

	2.9 Polaridad de las moléculas	
	2.10 Polaridad de los enlaces	
	2.11 Momento dipolar	
	2.12 Moléculas apolares	
	2.12 Moleculus apolales	
	3.1 Generalidades	
	3.2 Orbitales híbridos	
	3.3 Estado basal del átomo de carbono	
	3.4 Orbitales híbridos sp3	
	3.5 Orbitales híbridos sp2	
Unidad Didáctica 3:	3.6 Orbitales híbridos sp	
ATOMO DE CARBONO	3.7 Enlace sigma	
	3.8 Enlace pí	
	3.9 Longitud de enlace	
	3.11 Resonancia	
	4.1 Fuerzas Intermoleculares	
	4.2 Puntos de ebullición	
	4.3 Punto de fusión	
	4.4 Solubilidad	
	4.5 Ácidos y Bases	
	4.6 Mecanismos de reacción	
	4.7 Rupturas o clivajes homolíticos	
	4.8 Rupturas o clivajes heterolíticos.	
	4.9 Clasificación general de los mecanismos de reacción	
	4.10 Desplazamiento de electrones en las moléculas orgánicas	
	4.11 Efecto inductivo	
Unidad Didáctica 4:	4.12 Efecto mesomérico, resonancia.	
PROPIEDADES DE LOS	4.13 Fuerzas intermoleculares: fuerzas de Van der Waals, puentes de	
COMPUESTOS	hidrógeno, y consecuencias de estos.	
ORGANICOS	4.14 Definiciones de: ácido y base, reactivo, substrato, nucleófilo y	
	electrófilo	
	4.15 Naturaleza de las reacciones orgánicas	
	4.16 Ruptura de enlace químico: homolítico, heterolítico.	
	4.17 Formación de carbocationes, carbaniones, radicales y otros	
	intermediarios	
	4.18 Clases de reacciones orgánicas: introducción	
	4.19 Reacciones de sustitución, mecanismo SN1,SN2	
	4.20 Reacciones de eliminación, mecanismo E1,E2	
	metales.	
	5.1 Introducción	
	5.2 Hibridación de orbitales y estructura del metano	
	5.3 Formas de otros alcanos	
	5.4 Nomenclatura de los alcanos	
	5.5 Propiedades físicas de los alcanos	

Unidad Didáctica 5:

ALCANOS Y
CICLOALCANOS SUS
ESTRUCTURAS,
PROPIEDADES Y
SINTESIS

- 5.6 Análisis de conformación del butano
- 5.7 Estructuras de los cicloalcanos: tensión angular
- 5.8 Análisis de conformación del ciclohexano
- 5.9 Compuestos substituidos del ciclohexano: Hidrógenos axiales y ecuatoriales
- 5.10 Cicloalcanos disubstituidos:isomeria cis-trans
- 5.11 Síntesis de alcanos y cicloalcanos: La síntesis de alcanos de Corey-House; Reacción de Wurtz; Hidrogenación de alquenos; Reducción de haluros de alquilo
- 5.12 Reactividad química: Reacciones de alcanos y cicloalcanos
- 5.13 Introducción: Homólisis y Heterólisis de los enlaces covalentes
- 5.14 Reactivos intermedios en química orgánica
- 5.15 Energías de disociación de enlace: Energías de Disociación de Enlace y Estabilidades relativas de los Radicales Libres.
- 5.16 Reacciones químicas de los alcanos
- 5.17 La halogenación del metano: Observaciones experimentales y mecanismo de reacción
- 5.18 Cloración del metano: Cambios de energía
- 5.19 Velocidades de reacción: Teoría de las colisiones
- 5.20 Termodinámica y cinética de las reacciones del metano con halógenos
- 5.21 Halogenación de alcanos superiores: Reactividad y selectividad
- 5.22 La estructura de los carbocationes y los radicales libres: Hibridación sp2; Carbocationes; Radicales libres.
- 5.23 Reacciones de los cicloalcanos: reacciones de apertura del anillo del ciclopropano.
- 6.1 Introducción
- 6.2 Nomenclatura
- 6.3 Hibridación de orbitales y estructura de los alquenos
- 6.4 Calores de hidrogenación: Estabilidad de los alquenos
- 6.5 Cicloalquenos
- 6.6 Síntesis de alquenos: Reacciones de eliminación: Hidrogenación y deshidrogenación. Función del catalizador; Síntesis de alquenos por deshidratación de alcoholes; Estabilidad de los carbocationes; Estabilidad de los carbocationes y estado de transición; Estabilidad de

los carbocationes y estado de transicion; Estabilidad de los carbocationes y verificación de rearreglos moleculares; Formación de alquenos por deshidrohalogenación de haluros de alquilo; Formación de alquenos por deshalogenación de dihaluros vicinales.

- 6.7 Resumen de los métodos para la preparación de alquenos.
- 6.8 Reacciones de los alquenos: reacciones de adición del doble enlace carbono-carbono
- 6.9 Introducción
- 6.10 La adición de haluros de hidrógeno a los alquenos: explicación de la regla de Markovnikov: Enunciado moderno de la regla de Markovnikov; Reacciones regioespecíficas.
- 6.11 La adición de agua a alquenos: Hidratación catalizada por ácidos.
- 6.12 Preparación de alcoholes a partir de alquenos por oximercuriación desmercuriación (solvomercuración-desmercuración)
- 6.13 Hidroboración-oxidación.

Unidad Didáctica 6: ALQUENOS: ESTRUCTURA PROPIEDADES Y

SINTESIS

	CMSS
	 6.14 Adición de halógenos a alquenos 6.15 Epóxidos: epoxidación de alquenos 6.16 Oxidación de alquenos: Hidroxilación " sin " de los alquenos; Hidroxilación " anti" de alquenos; Ruptura oxidatíva de los alquenos; Ozonización (ozonólisis) de alquenos 6.17 Adición de radicales libres a los alquenos: La adición anti-Markovnikov del bromuro de hidrógeno 6.18 Dimerización de alquenos: Alquilación de alquenos por carbocationes 6.19 Resumen de las reacciones de adición de los alquenos
Unidad Didáctica 7: SISTEMAS CONJUGADOS INSATURADOS	 7.1 Sustitución alílica y el radical alílo 7.2 Estabilidad del radical alílo: Descripción orbital-molecular del radical alílo; Descripción del radical alílo según la teoría de la resonancia 7.3 Alcadienos e hidrocarburos poli-insaturados 7.4 butadieno: deslocalización de electrones: Longitudes de enlace del 1,3-butadieno; Conformaciones del 1,3-butadieno; Estabilidad de los dienos conjugados 7.5 Adición electrofílica y dienos conjugados adición 1,4: Comparación entre la velocidad de reacción y el control del equilibrio en una reacción química 7.6 La reacción de Diels-Alder: reacción de cicloadición-1,4 de dienos.
Unidad Didáctica 8: ALQUINOS	 8.1 Introducción 8.2 Nomenclatura de los alquinos 8.3 Carbono hibridado en sp: Estructura del acetileno 8.4 Reacciones de los alquinos: Adición de hidrógeno; Adición de halógenos;
Unidad Didáctica 9: ALCOHOLES FENOLES Y ETERES	 9.1 Estructura y nomenclatura 9.2 Propiedades físicas de los alcoholes, fenoles y éteres: Alcoholes y éteres de importancia. 9.3 Preparación de alcoholes: Hidratación de alquenos; Oximercuriación-desmercuriación; Hidroboración-Oxidación; Reducción de compuestos carbonílicos; Alcoholes a partir de reactivos de Grignard; Limitaciones de la síntesis de Grignard. 9.4 Reacciones de los alcoholes: Reacciones que implican la ruptura del enlace O-H; Los alcoholes como ácidos; Formación de ésteres; Oxidación de alcoholes; Reacciones que implican la ruptura de los enlaces C-O; Deshidratación de alcoholes; Reacción con haluros de hidrógeno;

	Reacciones con haluros de fósforo y cloruro de tionilo; Alcoholes
	polihidroxilicos.
	9.5 Eteres: Síntesis de éteres; Reacciones de los éteres.
	9.6 Síntesis de fenoles: Reacciones de los fenoles.
	9.7 Los fenoles como ácidos: Otras reacciones del grupo O-H de los fenoles;
	Reacciones del anillo bencénico de los fenoles
	10.1 Introducción
	10.2 Nomenclatura de aldehídos y cetonas
	10.3 Propiedades físicas
	10.4 Preparación de aldehídos: Preparación de aldehídos por oxidación de
	alcoholes; Preparación de aldehídos por oxidación de alcoholes;
	Preparación de aldehídos por reducción de derivados de ácido
	10.5 Preparación de cetonas: Preparación de cetonas por reacciones de
	acilación de Friedel-Crafts; Preparación de cetonas por oxidación de
	alcoholes secundarios; Preparación de cetonas por oxidación de los
	compuestos de organocadmio con cloruros de ácido; Preparación de
	cetonas a partir de dialquilcupratos de litio.
	10.6 Consideraciones generales sobre las reacciones de los compuestos de
	carbonilo: Estructura del grupo carbonilo; Adición nucleofílica al doble
	enlace carbono-oxígeno; Reversibilidad de las adiciones nucleofílicas al
Unidad Didáctica 10:	doble enlace carbono-oxígeno.
ALDEHIDOS Y	10.7 Adición de cianuro de hidrógeno y bisulfito de sodio
CETONAS	10.8 Tautomeria ceto-enol: Acidez del hidrógeno-alfa en los compuestos de
CETOTALS	carbonilo; Tautómeros ceto y enol
	10.9 Adición aldólica: la adición de iones enolato a aldehidos y cetonas:
	Adiciones aldólicas cruzadas
	10.10 Reacción de cannizzaro.
	10.11 Adición de Iluros: La reacción de Wittig; Adición de iluros de azufre
	10.12 Adición de alcoholes: Acetales y Cetales: Tioacetales y tiocetales
	10.13 Adición de derivados de amoniaco: 2-4-dinitrofenilhidrazonas,
	semicarbazonas y oximas; Iminas y enaminas; Hidrazonas: La reducción
	de Wolff-Kishner.
	10.14 Halogenación de cetonas: Halogenación promovida por bases;
	Halogenación catalizada por ácidos; La reacción del haloformo
	10.15 Aldehídos y cetonas insaturados en alfa y beta.
	10.16 Pruebas químicas para la determinación de aldehídos y cetonas: Prueba
	de Tollens o (del espejo de plata)

3. Referencia bibliográfica general de la unidad de formación:

- 1. Quimica Organica; Solomons T.W, Limusa Mexico (2000).
- 2. Quimica Organica Fundamental; Henry Rakoff, Norman C. Rose, Limusa (1982)
- 3. Quimica Organica; Menger, Goldsmith, Mandell, Fondo Educativo Interamericano S.A. (1976).
- 4. Quimica Organica; Morrison y Boyd (Quinta Edicion), Addison-Wesley Iberoamerica (1990)
- 5. Quimica Organica; Mc. Murray, Grupo Editorial Iberoamericana (1994)
- 6. Fundamental Of Organica Chemestry; Harper Collins College Outline (1993)
- 7. Quimica Organica; Herbert Meislich, Howard Nechamkim y Jacob Sharefkin, Teoria y 2565 Problemas Resueltos Sxhaum-Mc.Graw Hill (1987)
- 8. Quimica Organica; Satanley H. Pine, James B. Hendrickson Donald J. Cram, George S. Hammond, Mc. Graw Hill (1987)
- 9. Quimica Organica de Metano a Macromoleculas John D. Roberts, Ross Stewaert-Marjorie-Caserio. Interamericano (1979).